webnovel

Life

Little is known about Fibonacci's life beyond the few facts given in his mathematical writings. During Fibonacci's boyhood his father, Guglielmo, a Pisan merchant, was appointed consul over the community of Pisan merchants in the North African port of Bugia (now Bejaïa, Algeria). Fibonacci was sent to study calculation with an Arab master. He later went to Egypt, Syria, Greece, Sicily, and Provence, where he studied different numerical systems and methods of calculation.

When Fibonacci's Liber abaci first appeared, Hindu-Arabic numerals were known to only a few European intellectuals through translations of the writings of the 9th-century Arab mathematician al-Khwārizmī. The first seven chapters dealt with the notation, explaining the principle of place value, by which the position of a figure determines whether it is a unit, 10, 100, and so forth, and demonstrating the use of the numerals in arithmetical operations. The techniques were then applied to such practical problems as profit margin, barter, money changing, conversion of weights and measures, partnerships, and interest. Most of the work was devoted to speculative mathematics—proportion (represented by such popular medieval techniques as the Rule of Three and the Rule of Five, which are rule-of-thumb methods of finding proportions), the Rule of False Position (a method by which a problem is worked out by a false assumption, then corrected by proportion), extraction of roots, and the properties of numbers, concluding with some geometry and algebra. In 1220 Fibonacci produced a brief work, the Practica geometriae ("Practice of Geometry"), which included eight chapters of theorems based on Euclid's Elements and On Divisions.

The Liber abaci, which was widely copied and imitated, drew the attention of the Holy Roman emperor Frederick II. In the 1220s Fibonacci was invited to appear before the emperor at Pisa, and there John of Palermo, a member of Frederick's scientific entourage, propounded a series of problems, three of which Fibonacci presented in his books. The first two belonged to a favourite Arabic type, the indeterminate, which had been developed by the 3rd-century Greek mathematician Diophantus. This was an equation with two or more unknowns for which the solution must be in rational numbers (whole numbers or common fractions). The third problem was a third-degree equation (i.e., containing a cube), x3 + 2x2 + 10x = 20 (expressed in modern algebraic notation), which Fibonacci solved by a trial-and-error method known as approximation; he arrived at the answer

sexagesimal fractions

in sexagesimal fractions (a fraction using the Babylonian number system that had a base of 60), which, when translated into modern decimals (1.3688081075), is correct to nine decimal places.