webnovel

Amazing Experimental Results

Editor: Henyee Translations

Bubbles in a liquid could be stably suspended and periodically pulsated by a certain sound field. When it reached a collapse, within picoseconds, the bubble could produce a volumetric compression ratio of one to a million and create a high temperature and high pressure environment. When the sound pressure was large enough, the energy accumulation would cause the bubbles to illuminate. This phenomenon was called sonoluminescence.

In a proper driving pressure environment, the sonoluminescence bubbles could remain spherical. The nonlinear vibration was repeated for millions or even hundreds of millions of cycles. Because of this characteristic, controllable fusion could possibly be achieved under relatively low-temperature conditions.

Inside the Jinling Institute for Advanced Study.

Next chapter