Xiao Dong read 3/5 of the book on the first day, which was 0.6 times the volume of the book. The next day, he read another 20 pages, which was equivalent to 1/5 of the entire book, which was 0.2 times the volume of the entire book. Therefore, the number of pages Little Dong had read was: The number of pages read = the volume of the book x the number of days read-the total number of pages = 06 × volume of the book × 1 - 02 × volume of the book = 02 × the volume of the book Since the total number of pages in the book did not change, the number of pages that Xiao Dong had read was 0.2 times that of the book.
The total number of pages in the book was $30+30=60$pages. The number of pages read is $2x$, and the number of unread pages is $3x$. where $x$is an integral number. On the first day, the ratio of pages read to unread was $2:3, so $2x=3x+30. The solution is $x=10$. Therefore, the number of pages read is $2x=20$, and the number of unread pages is $3x=30$. So this novel has a total of $60$pages, I've read $20$pages, I haven't read $30$pages.
Let the total number of pages of the book be x, then Xiaowang read 125% on the first day = 0125x 136 pages on the second day, so Xiaowang read a total of 0125x + 136 pages. The ratio of the remaining pages to the number of pages seen is 3:5, so the number of pages left is 0875x- 136, and the number of pages seen is 0875x- 136 + 0125x = 09x. According to the question, the ratio of the remaining pages to the number of pages seen is 3:5, so the equation can be written: 0875x - 136 = 3(09x) Solve the equation: 0125x = 192 x = 144 Therefore, the total number of pages in this book was 144.
Wang Hong read a book on the first day, read 3/7 of the total pages, and the next day, read 1/4 of the total pages. How much of the book was left? Answer: The total number of pages in the remaining books is 3/7 of the total number of pages plus 1/4, which means the total number of pages is 8/7 plus 1/4, which is 9/11. Therefore, Wang Hong still had 9/11 of the book to read.
How many pages are there in this book? According to the title, Xiaoming read 10% of the book on the first day, which was 10% of the book divided by 100% = 1/10 pages. Xiao Ming read 35% of the book the next day, which was 35% of the book divided by 100% = 035 pages. Xiao Ming read 44 pages of the book on the third day, so the number of pages in the book can be calculated by the following formula: 1 ÷ (1/10 + 035 + 1/10) = 44 Solve the equation: Number of pages in the book = 44 × 100%/(1 + 035 + 1) = 3520 Therefore, this book had a total of 3520 pages.
Xiao Dong read a fifth of the book on the first day and 15 pages on the second day. In two days, he read 15 times the book. Therefore, he had read the entire book in two days, 3/2 = 15 times. Then the book had a total of $pages × 15 = (pages + 15)+2 $pages.
Suppose the book has a total of $n$pages, the number of pages read is $m$, and the number of unread pages is $n-m$. According to the question, the ratio of the number of pages read to the number of pages unread is two to three, and the following equations can be listed: $$ \begin{cases} m = 2(n-m) \\ m + 30 = n \end{cases} $$ Transforming the second equation into $n = 4m + 30$and replacing it into the first equation gives $2m = 30$. The solution is $m = 15$. So the book has a total of $n=50$pages, the number of pages read is $m=20$, and the number of unread pages is $n-m=30$.
Xiao Ming read a book on the first day, he read 1/6 of the whole book, the second day, he read 24 pages, the third day, he read the total number of pages in the previous two days If he read 24 pages the next day, he would read (24 div6) = 4 pages the next day. The rest of the books had 5/6 pages. Xiaoming read 1/6 pages on the first day, so he read (5/6 div1/6) = 30 pages on the first day. Xiao Ming's remaining book had 1/6 pages. The number of pages he read the next day was 4 + 30 = 34. Xiao Ming's remaining book had 1/6 pages. The number of pages he read on the third day was 34 + 24 = 58. Therefore, on the third day, Xiao Ming read the entire book's 58 + 6 = 9 pages.
Xiao Ming read a novel on the first day and read 1/8 of the entire book with 21 pages more. On the second day, he read 1/6 of the entire book with 4 pages less, leaving 102 pages unread. We can use the following formula to calculate the remaining pages: Remaining pages = total pages-number of pages viewed Putting the known information into the formula, he obtained: Remaining pages = 102 pages Therefore, Xiao Ming read 1/6 of the book on the second day, leaving 102 pages.
Xiao Ming read 3/8 of the book on the first day, which was 042675 or 42675% of the book. The next day, he read 18 pages, and the remaining pages were 5/8 of the book, which was 075 or 75%. Suppose the book has x pages: 3/5 of the total number of pages read = (x * 3/8 + 18) / x = 3/5 To simplify it: x = 42 * 8 / 3 = 96 Therefore, the book had a total of 96 pages.
Xiao Ming reads a book on the first day, 20% of the total number of pages, and the number of pages read on the second day is 5/4 of the number of pages read on the first day, leaving 110 pages Assuming that the total number of pages in this book is x: I read 20% on the first day, which is 02x pages. I read 5/4x pages the next day because I read more pages the next day than the first day The remaining pages are x -02x- 5/4x = 110 pages Solve the equation: x = 1100 Therefore, the total number of pages in this book is 1100. Xiaoming read 200 pages on the first day and 300 pages on the second day.